Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion specifications to construct, experiment, and properly scale your generative AI ideas on AWS.
In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the models as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that utilizes reinforcement learning to boost reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. An essential identifying feature is its support learning (RL) step, which was used to refine the model's responses beyond the standard pre-training and tweak process. By integrating RL, DeepSeek-R1 can adjust better to user feedback and goals, ultimately boosting both importance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, implying it's geared up to break down complex questions and factor through them in a detailed manner. This assisted thinking process allows the design to produce more precise, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT abilities, aiming to create structured actions while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually recorded the industry's attention as a versatile text-generation model that can be integrated into different workflows such as representatives, logical reasoning and information analysis jobs.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion criteria, enabling effective inference by routing questions to the most appropriate professional "clusters." This method permits the design to specialize in various issue domains while maintaining overall effectiveness. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 design to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more efficient models to mimic the habits and thinking patterns of the bigger DeepSeek-R1 design, using it as an instructor model.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this model with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent damaging content, and examine designs against key security criteria. At the time of writing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop numerous guardrails tailored to different usage cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limitation increase, develop a limit boost request and connect to your account team.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For instructions, see Set up consents to utilize guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, avoid hazardous material, and examine designs against essential safety criteria. You can carry out safety procedures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to assess user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The basic circulation includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After getting the design's output, another guardrail check is used. If the output passes this final check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following sections demonstrate reasoning using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a supplier and choose the DeepSeek-R1 design.
The model detail page offers essential details about the design's abilities, prices structure, and execution standards. You can discover detailed use directions, consisting of sample API calls and code bits for combination. The design supports numerous text generation tasks, including content production, code generation, and question answering, utilizing its reinforcement learning optimization and CoT thinking abilities.
The page also includes deployment alternatives and licensing details to help you get going with DeepSeek-R1 in your applications.
3. To start using DeepSeek-R1, select Deploy.
You will be prompted to set up the release details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of instances, enter a number of instances (between 1-100).
6. For Instance type, choose your circumstances type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended.
Optionally, you can set up sophisticated security and facilities settings, including virtual private cloud (VPC) networking, service role permissions, and encryption settings. For many use cases, the default settings will work well. However, for production releases, you might wish to review these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to begin utilizing the model.
When the deployment is total, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock play ground.
8. Choose Open in play area to access an interactive user interface where you can try out different prompts and change model criteria like temperature level and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimum outcomes. For instance, <|begin▁of▁sentence|><|User|>material for inference<|Assistant|>.
This is an outstanding method to explore the model's reasoning and text generation abilities before incorporating it into your applications. The play ground provides instant feedback, assisting you comprehend how the model reacts to different inputs and letting you tweak your prompts for optimum results.
You can quickly test the design in the play ground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example demonstrates how to carry out inference using a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have created the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, sets up inference parameters, and sends out a request to generate text based upon a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML options that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart uses two convenient techniques: using the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both approaches to help you pick the approach that finest suits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, pick Studio in the navigation pane.
2. First-time users will be prompted to develop a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The design browser displays available models, with details like the supplier name and design capabilities.
4. Look for forum.altaycoins.com DeepSeek-R1 to see the DeepSeek-R1 design card.
Each design card reveals crucial details, including:
- Model name
- Provider name
- Task classification (for example, Text Generation).
Bedrock Ready badge (if appropriate), showing that this design can be signed up with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to conjure up the model
5. Choose the design card to view the model details page.
The design details page includes the following details:
- The design name and supplier details.
Deploy button to deploy the design.
About and Notebooks tabs with detailed details
The About tab consists of important details, such as:
- Model description.
- License details.
- Technical specifications.
- Usage guidelines
Before you release the design, it's advised to evaluate the design details and license terms to validate compatibility with your usage case.
6. Choose Deploy to proceed with deployment.

7. For Endpoint name, use the automatically generated name or create a custom one.
8. For example type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
9. For Initial circumstances count, enter the variety of instances (default: 1).
Selecting appropriate circumstances types and counts is important for cost and efficiency optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
10. Review all setups for precision. For this model, we strongly suggest sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
11. Choose Deploy to release the design.
The deployment process can take numerous minutes to complete.
When release is complete, your endpoint status will change to InService. At this point, the design is prepared to accept reasoning requests through the endpoint. You can monitor the deployment development on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the deployment is complete, you can conjure up the model using a SageMaker runtime customer and integrate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the essential AWS approvals and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for inference programmatically. The code for releasing the design is supplied in the Github here. You can clone the notebook and bytes-the-dust.com run from SageMaker Studio.
You can run extra requests against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Clean up
To avoid unwanted charges, finish the actions in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you released the design using Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace releases.
2. In the Managed implementations area, find the endpoint you desire to delete.
3. Select the endpoint, and on the Actions menu, choose Delete.
4. Verify the endpoint details to make certain you're deleting the correct deployment: 1. Endpoint name.
2. Model name.
3. Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For yewiki.org more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business construct ingenious options utilizing AWS services and sped up compute. Currently, he is focused on developing techniques for fine-tuning and optimizing the reasoning performance of big language models. In his spare time, Vivek delights in hiking, watching movies, and trying different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing options that help customers accelerate their AI journey and unlock organization value.